Files
DatBrowser/app/AIPrompt/OpenAPIPrompt.php

130 lines
4.9 KiB
PHP

<?php
namespace App\AIPrompt;
/**
* Use OpenAI API to get answers from a model.
*/
class OpenAPIPrompt implements IAIPrompt
{
private string $host;
public function __construct(string $host = null) {
$this->host = $host ?? config('llm.host');
}
private function getHeaders(): array
{
return [
'Content-Type' => 'application/json'
];
}
/**
* Call the OpenAI API with the given endpoint and body.
* @param string $endpoint
* @param string $body
* @throws \Exception
* @return string
*/
private function callAPI(string $endpoint, string $body): string
{
$url = $this->host . $endpoint;
$ch = curl_init($url);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_HTTPHEADER, $this->getHeaders());
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, $body);
$response = curl_exec($ch);
$httpCode = curl_getinfo($ch, CURLINFO_HTTP_CODE);
curl_close($ch);
if ($httpCode !== 200) {
throw new \Exception("Error calling OpenAI API: HTTP $httpCode - $response");
}
return $response;
}
/**
* Call the OpenAI API generate endpoint. to generate a response to a prompt.
* @param string $model
* @param string $prompt
* @param array $images
* @return void
*/
public function generate(string $model, string $prompt, array $images = [], string $outputFormat = null, string $systemMessage = null, bool $keepAlive = true, bool $shouldThink = false): string
{
/*
Generate a completion
POST /api/generate
Generate a response for a given prompt with a provided model. This is a streaming endpoint, so there will be a series of responses. The final response object will include statistics and additional data from the request.
Parameters
model: (required) the model name
prompt: the prompt to generate a response for
suffix: the text after the model response
images: (optional) a list of base64-encoded images (for multimodal models such as llava)
think: (for thinking models) should the model think before responding?
Advanced parameters (optional):
format: the format to return a response in. Format can be json or a JSON schema
options: additional model parameters listed in the documentation for the Modelfile such as temperature
system: system message to (overrides what is defined in the Modelfile)
template: the prompt template to use (overrides what is defined in the Modelfile)
stream: if false the response will be returned as a single response object, rather than a stream of objects
raw: if true no formatting will be applied to the prompt. You may choose to use the raw parameter if you are specifying a full templated prompt in your request to the API
keep_alive: controls how long the model will stay loaded into memory following the request (default: 5m)
context (deprecated): the context parameter returned from a previous request to /generate, this can be used to keep a short conversational memory
Structured outputs
Structured outputs are supported by providing a JSON schema in the format parameter. The model will generate a response that matches the schema. See the structured outputs example below.
JSON mode
Enable JSON mode by setting the format parameter to json. This will structure the response as a valid JSON object. See the JSON mode example below.
Important
It's important to instruct the model to use JSON in the prompt. Otherwise, the model may generate large amounts whitespace.
*/
// Transform the images to base64
foreach ($images as &$image) {
if (file_exists($image)) {
$image = base64_encode(file_get_contents($image));
}
}
$body = [
'model' => $model,
'prompt' => $prompt,
'images' => $images,
'think' => $shouldThink,
'stream' => false,
];
if ($systemMessage !== null) {
$body['system'] = $systemMessage;
}
if ($outputFormat !== null) {
$body['format'] = json_decode($outputFormat);
}
if (!$keepAlive) {
$body['keep_alive'] = "0m";
}
$body = json_encode($body);
dump($body);
$response = $this->callAPI('/api/generate', $body);
$decodedResponse = json_decode($response, true);
if (json_last_error() !== JSON_ERROR_NONE) {
throw new \Exception("Error decoding JSON response: " . json_last_error_msg());
}
return $decodedResponse['response'] ?? '';
}
}